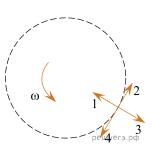

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

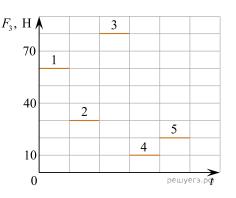
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Физической величиной является:
 - 1) испарение 2) масса 3) линейка 4) секунда 5) амперметр
- **2.** Если кинематические законы прямолинейного движения тел вдоль оси Ox имеют вид: $x_1(t) = A + Bt$, где A = 10 м, B = 1,2 м/с, и $x_2(t) = C + Dt$, где C = 45 м, D = -2,3 м/с, то тела встретятся в момент времени t, равный:
 - 1) 20 c
- 2) 18 c
- 3) 16 c
- 4) 13 c
- 5) 10 c
- **3.** На рисунке представлен график зависимости координаты y тела, брошенного вертикально вверх с высоты h_0 , от времени t. Укажите правильное соотношение для модулей скоростей тела в точках A и B.



4) $v_B = 3\sqrt{3}v_A$

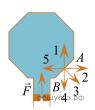
1)
$$v_B = \sqrt{2}v_A$$
 2) $v_B = \sqrt{3}v_A$ 3) $v_B = 3v_A$ 5) $v_B = 9v_A$


4. Тележка движется по окружности против часовой стрелки с постоянной угловой скоростью ω (см. рис.). Установите соответствие между линейной скоростью \vec{v} движения тележки и ее направлением, а также между ускорением \vec{a} тележки и его направлением:

Физическая величина	Направление	
А) Линейная скорость \vec{v} движения тележки \vec{a} тележки	1 — Стрелка 1 2 — Стрелка 2 3 — Стрелка 3 4 — Стрелка 4	

- 1) A1Б2;
- 2) А2Б1;
- 3) А2Б3;
- 4) A254;
- 5) А4Б1.

5. Тело двигалось в пространстве под действием трёх постоянных по направлению сил $\vec{F}_1, \ \vec{F}_2, \ \vec{F}_3$. Модуль первой силы $F_1 = 20$ H, второй — $F_2 = 55$ H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:



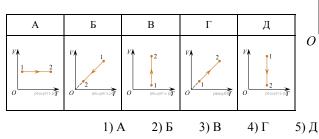
1) 1 2) 2

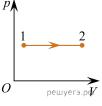
3)3

4) 4 5) 5

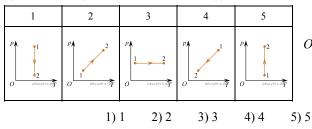
6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:

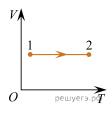
1) 1 2)

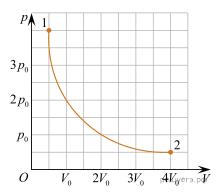

2


3)3

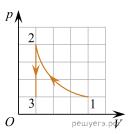
4) 4


5) 5

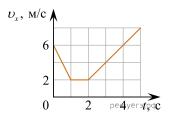

7. На графике в координатах (p,V) представлен процесс $1{\to}2$ в идеальном газе, количество вещества которого постоянно. В координатах (V,T) этому процессу соответствует график, обозначенный буквой:



8. На рисунке представлен график зависимости объема идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах (p, T) представлен на рисунке, обозначенном цифрой:



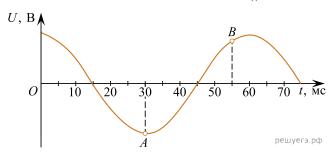
9. На рисунке показан график зависимости давления p одноатомного идеального газа от его объёма V. При переходе из состояния 1 в состояние 2 газ совершил работу, равную A=7 кДж. Количество теплоты Q, полученное газом при этом переходе, равно:


- 1) 9 кДж
- 2) 7 кДж
- 3) 5 кДж
- 4) 4 кДж
- 5) 1 кДж

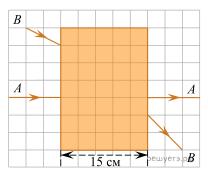
10. Идеальный одноатомный газ, количество вещества которого постоянно, перевели изотермически из состояния 1 в состояние 2, а затем изохорно — из состояния 2 в состояние 3 (см. рис.). Если A_{12} , A_{23} и ΔU_{12} , ΔU_{23} , ΔU_{123} — это работа газа в процессах $1 \to 2$, $2 \to 3$ и изменение внутренней энергии газа в процессах $1 \to 2$, $2 \to 3$, $1 \to 2 \to 3$ соответственно, то правильными соотношениями являются:

1)
$$A_{12} < 0;$$
 2) $A_{23} = 0;$ 3) $\Delta U_{12} < 0;$ 4) $\Delta U_{23} < 0;$ 5) $\Delta U_{123} = 0.$

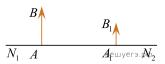
11. Материальная точка массой m=2,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t=4 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.



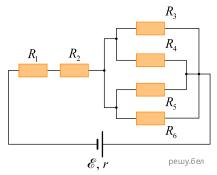
- 12. С помощью подъёмного механизма груз равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени $\Delta t=10$ с после начала подъёма груз находился на высоте h=50 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A=44 кДж, то масса m груза равна ... кг.
- 13. Камень массой m=0,20 кг бросили с башни в горизонтальном направлении с начальной скоростью, модуль которой $\upsilon_0=20~\frac{\rm M}{\rm C}$. Кинетическую энергию $E_{\rm K}=80$ Дж камень будет иметь через промежуток времени Δt после броска, равный ... с.
- **14.** Два маленьких шарика массами $m_1=32$ г и $m_2=16$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l=99 см так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha=60^\circ$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое, то максимальная высота $h_{\rm max}$ на которую они поднялись равна ... см.
- **15.** В баллоне находится идеальный газ массой $m_1=3$ кг. После того как из баллона выпустили m=0,75 кг газа и понизили абсолютную температуру оставшегося газа до $T_2=340$ K, давление газа в баллоне уменьшилось на $\alpha=40,0$ %. Модуль изменения абсолютной температуры $|\varDelta T|$ газа в баллоне равен ... **K**


16. Значения плотности $\rho_{\rm H}$ насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0=24$ °C содержится m=12 г водяного пара, то чему равна относительная влажность ϕ воздуха в комнате? Ответ приведите в процентах.

t, °C	21	22	23	24	25
$\rho_{H}, r/m^3$	18,3	19,4	20,6	21,8	23,0


- 17. В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в три раза больше минимального, а максимальный объём газа в два раза больше минимального. Коэффициент полезного действия η цикла равен ... %.
- **18.** Если период полураспада радиоактивного изотопа йода $^{131}_{53}I$ равен $T_{1/2}$ = 8 сут., то 75 % ядер этого изотопа распадётся за промежуток времени Δt , равный ... сут.
- 19. Аккумулятор, ЭДС которого $\varepsilon=1,4$ В и внутреннее сопротивление r=0,1 Ом, замкнут нихромовым (c=0,46 кДж/(кг · K) проводником массой m=21,3 г. Если на нагревание проводника расходуется $\alpha=60\%$ выделяемой в проводнике энергии, то максимально возможное изменение температуры $\varDelta T_{\rm max}$ проводника за промежуток времени $\varDelta t=1$ мин равно ... K.
- **20.** Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}$ кг, заряды которых $q_1=q_2=1,00\cdot 10^{-10}$ Кл, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние l=100 см между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=50,0$ $\frac{\rm M}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **21.** Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}=30$ мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}=55$ мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}=79$ В, то действующее значение напряжения $U_{\rm \Pi}$ равно ... **B**.

22. На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

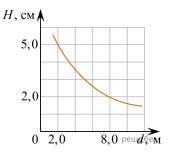

23. Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $_{54}^{133}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~\mathrm{cyt.}$, то $\Delta N=90000$ ядер $_{54}^{133}$ Xe распадётся за промежуток времени Δt , равный ... сут.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт \cdot ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$


В резисторе R_6 выделяется тепловая мощность $P_6 = 90.0$ Вт. Если внутреннее сопротивление источника тока r = 4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6\,\frac{\mathrm{M}}{\mathrm{c}}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\mathrm{JI}}=6,4\cdot 10^{-15}~\mathrm{H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pa_{Z}}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

